Leachability of Heavy Metals from Lightweight Aggregates Made with Sewage Sludge and Municipal Solid Waste Incineration Fly Ash

نویسندگان

  • Na Wei
  • Oladele A. Ogunseitan
چکیده

Lightweight aggregate (LWA) production with sewage sludge and municipal solid waste incineration (MSWI) fly ash is an effective approach for waste disposal. This study investigated the stability of heavy metals in LWA made from sewage sludge and MSWI fly ash. Leaching tests were conducted to find out the effects of MSWI fly ash/sewage sludge (MSWI FA/SS) ratio, sintering temperature and sintering time. It was found that with the increase of MSWI FA/SS ratio, leaching rates of all heavy metals firstly decreased and then increased, indicating the optimal ratio of MSWI fly ash/sewage sludge was 2:8. With the increase of sintering temperature and sintering time, the heavy metal solidifying efficiencies were strongly enhanced by crystallization and chemical incorporations within the aluminosilicate or silicate frameworks during the sintering process. However, taking cost-savings and lower energy consumption into account, 1100 °C and 8 min were selected as the optimal parameters for LWA sample- containing sludge production. Furthermore, heavy metal leaching concentrations under these optimal LWA production parameters were found to be in the range of China's regulatory requirements. It is concluded that heavy metals can be properly stabilized in LWA samples containing sludge and cannot be easily released into the environment again to cause secondary pollution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Environmental Management of Fly Ash Produced from the Incineration of Municipal Solid Waste

Incineration is a widely used and well established technology for the municipal solid waste (MSW) management. Modern MSW incineration plants are equipped with improved air pollution control (APC) systems, which reduce pollutants well below the established limits. The environmental concern has, thus, moved from the air emissions to the solid residues generated from the APC systems of the inciner...

متن کامل

Heavy Metals Removal from Sewage Sludge and Municipal Solid Waste (MSW) by Co-Composting Process

Background & Aims of the Study: One of the most important pollutants in drinking water, air and soils is heavy metals. It is very harmful for humans and other live organisms. The purpose of this study was the usage of a co-composting process for removal of heavy metals from municipal solid waste and sewage sludge. Materials and Methods: This experimental study was a condu...

متن کامل

Electrodialytic extraction of heavy metals from Greenlandic MSWI fly ash as a function of remediation time and L/S ratio

The management of Greenlandic municipal solid waste incineration (MSWI) fly ash could be improved. Presently, the fly ash is disposed of in Norway as the fly ash is classified as hazardous waste. Fly ash contains high amounts of leachable heavy metals, but also resources that could be beneficial for reuse. In electrodialytic remediation a direct current is applied to a contaminated particulate ...

متن کامل

Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash.

Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alka...

متن کامل

Rice Husk Ash to Stabilize Heavy Metals Contained in Municipal Solid Waste Incineration Fly Ash: First Results by Applying New Pre-treatment Technology

A new technology was recently developed for municipal solid waste incineration (MSWI) fly ash stabilization, based on the employment of all waste and byproduct materials. In particular, the proposed method is based on the use of amorphous silica contained in rice husk ash (RHA), an agricultural byproduct material (COSMOS-RICE project). The obtained final inert can be applied in several applicat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2015